""" title: Obsidian RAG Pipeline author: Daniel Henry version: 0.15 """ import asyncio import json import time import urllib.parse from typing import AsyncGenerator import aiohttp from pydantic import BaseModel, Field class Pipe: class Valves(BaseModel): # Endpoints ollama_url: str = Field(default="http://ollama.internal.henryhosted.com:11434") qdrant_url: str = Field(default="http://app-01.internal.henryhosted.com:6333") rerank_url: str = Field(default="http://ollama.internal.henryhosted.com:7997") # Qdrant collection_name: str = Field(default="obsidian_vault") retrieve_count: int = Field( default=50, description="Candidates to fetch from Qdrant" ) qdrant_score_threshold: float = Field( default=0.3, description="Minimum similarity score" ) # Reranker rerank_enabled: bool = Field( default=True, description="Set to False to skip reranking" ) rerank_timeout: float = Field(default=60.0) min_rerank_score: float = Field( default=0.01, description="Minimum rerank score to keep" ) final_top_k: int = Field( default=10, description="Chunks to keep after reranking" ) # LLM embedding_model: str = Field(default="nomic-embed-text:latest") llm_model: str = Field(default="llama3.2:3b") llm_context_size: int = Field(default=8192) llm_timeout: float = Field(default=300.0) query_rewrite_model: str = Field( default="", description="Model for query rewriting. Leave empty to use llm_model.", ) # Obsidian vault_name: str = Field( default="Main", description="For generating obsidian:// links" ) # Display show_thinking: bool = Field(default=True) show_sources: bool = Field(default=True) show_stats: bool = Field(default=True) token_warning_threshold: int = Field( default=6000, description="Warn if context exceeds this" ) def __init__(self): self.valves = self.Valves() async def pipe(self, body: dict) -> AsyncGenerator[str, None]: messages = body.get("messages", []) if not messages: yield "No messages provided." return query = messages[-1].get("content", "").strip() if not query: yield "Empty query." return async with aiohttp.ClientSession() as session: async for chunk in self._execute(session, query, messages): yield chunk async def _execute( self, session: aiohttp.ClientSession, query: str, messages: list[dict], ) -> AsyncGenerator[str, None]: think = self.valves.show_thinking # Start thinking block immediately if think: yield "\n" yield f"**Query:** {query}\n\n" # ───────────────────────────────────────────── # Step 1: Rewrite query with conversation context # ───────────────────────────────────────────── if think: yield "**Step 1: Query Rewriting**\n" t0 = time.time() rewrite_model = self.valves.query_rewrite_model or self.valves.llm_model # Build conversation context for rewriting conversation_for_rewrite = [] for m in messages[:-1]: # All messages except the last one role = m.get("role", "") content = m.get("content", "") if role == "user": conversation_for_rewrite.append(f"User: {content}") elif role == "assistant": # Truncate assistant responses to avoid bloat truncated = content[:500] + "..." if len(content) > 500 else content conversation_for_rewrite.append(f"Assistant: {truncated}") current_question = messages[-1].get("content", "") # If there's prior conversation, rewrite the query if conversation_for_rewrite: rewrite_prompt = f"""Do not interpret or answer the question. Simply add enough context from the conversation so the question makes sense on its own. Conversation: {chr(10).join(conversation_for_rewrite)} Latest question: {current_question} Rewrite the question to be standalone (respond with ONLY the rewritten question, nothing else):""" try: async with session.post( f"{self.valves.ollama_url}/api/generate", json={ "model": rewrite_model, "prompt": rewrite_prompt, "stream": False, }, timeout=aiohttp.ClientTimeout(total=30), ) as resp: if resp.status == 200: data = await resp.json() rewritten = data.get("response", "").strip() # Sanity check - if rewrite is empty or way too long, use original if rewritten and len(rewritten) < 1000: search_query = rewritten else: search_query = current_question else: search_query = current_question except Exception as e: if think: yield f" ⚠ Rewrite failed: {e}, using original query\n" search_query = current_question else: # No prior conversation, use the question as-is search_query = current_question if think: yield f" Model: {rewrite_model}\n" yield f" Original: {current_question}\n" yield f" Search query: {search_query}\n" yield f" ✓ Done ({time.time() - t0:.2f}s)\n\n" # ───────────────────────────────────────────── # Step 2: Embed # ───────────────────────────────────────────── if think: yield "**Step 2: Embedding**\n" t0 = time.time() try: async with session.post( f"{self.valves.ollama_url}/api/embeddings", json={ "model": self.valves.embedding_model, "prompt": search_query, "options": {"num_ctx": 8192}, }, timeout=aiohttp.ClientTimeout(total=15), ) as resp: if resp.status != 200: if think: yield f" ✗ HTTP {resp.status}\n\n\n" yield f"Embedding failed: HTTP {resp.status}" return embedding = (await resp.json()).get("embedding") except Exception as e: if think: yield f" ✗ {e}\n\n\n" yield f"Embedding failed: {e}" return if think: yield f" ✓ Done ({time.time() - t0:.2f}s)\n\n" # ───────────────────────────────────────────── # Step 3: Search Qdrant # ───────────────────────────────────────────── if think: yield "**Step 3: Qdrant Search**\n" t0 = time.time() try: async with session.post( f"{self.valves.qdrant_url}/collections/{self.valves.collection_name}/points/search", json={ "vector": embedding, "limit": self.valves.retrieve_count, "with_payload": True, "score_threshold": self.valves.qdrant_score_threshold, }, timeout=aiohttp.ClientTimeout(total=15), ) as resp: if resp.status != 200: if think: yield f" ✗ HTTP {resp.status}\n\n\n" yield f"Qdrant search failed: HTTP {resp.status}" return qdrant_results = (await resp.json()).get("result", []) except Exception as e: if think: yield f" ✗ {e}\n\n\n" yield f"Qdrant search failed: {e}" return if think: yield f" ✓ Found {len(qdrant_results)} chunks ({time.time() - t0:.2f}s)\n" if not qdrant_results: if think: yield " ✗ No results\n\n\n" yield "No relevant notes found for this query." return # Show top 5 if think: yield " Top 5:\n" for i, r in enumerate(qdrant_results[:5]): name = r.get("payload", {}).get("fileName", "?") score = r.get("score", 0) yield f" {i+1}. [{score:.4f}] {name}\n" yield "\n" # ───────────────────────────────────────────── # Step 4: Rerank (optional) # ───────────────────────────────────────────── if self.valves.rerank_enabled: if think: yield "**Step 4: Reranking**\n" t0 = time.time() docs_for_rerank = [ r.get("payload", {}).get("content", "") for r in qdrant_results ] try: async with session.post( f"{self.valves.rerank_url}/rerank", json={ "query": search_query, "documents": docs_for_rerank, "return_documents": False, }, timeout=aiohttp.ClientTimeout(total=self.valves.rerank_timeout), ) as resp: if resp.status != 200: if think: yield f" ⚠ Reranker failed: HTTP {resp.status}, using Qdrant order\n\n" chunks = qdrant_results[: self.valves.final_top_k] else: rerank_results = (await resp.json()).get("results", []) # Apply rerank scores and filter scored = [] for item in rerank_results: idx = item["index"] score = item["relevance_score"] if score >= self.valves.min_rerank_score: chunk = qdrant_results[idx].copy() chunk["rerank_score"] = score scored.append(chunk) scored.sort(key=lambda x: x["rerank_score"], reverse=True) chunks = scored[: self.valves.final_top_k] if think: yield f" ✓ Kept {len(chunks)} chunks ({time.time() - t0:.2f}s)\n" if chunks: yield " Top 5 after rerank:\n" for i, c in enumerate(chunks[:5]): name = c.get("payload", {}).get("fileName", "?") score = c.get("rerank_score", 0) yield f" {i+1}. [{score:.4f}] {name}\n" yield "\n" except Exception as e: if think: yield f" ⚠ Reranker error: {e}, using Qdrant order\n\n" chunks = qdrant_results[: self.valves.final_top_k] else: if think: yield "**Step 4: Reranking** (disabled)\n\n" chunks = qdrant_results[: self.valves.final_top_k] if not chunks: if think: yield " ✗ No chunks after filtering\n\n\n" yield "No relevant notes passed the relevance threshold." return # ───────────────────────────────────────────── # Step 5: Build context # ───────────────────────────────────────────── if think: yield "**Step 5: Build Context**\n" context_parts = [] for i, chunk in enumerate(chunks, 1): payload = chunk.get("payload", {}) file_name = payload.get("fileName", "Unknown") content = payload.get("content", "").strip() source = payload.get("source", "") part = f"### Note {i}: {file_name}\n" if source: part += f"Original source: {source}\n" part += f"\n{content}" context_parts.append(part) context = "\n\n---\n\n".join(context_parts) context_chars = len(context) estimated_tokens = context_chars // 4 if think: yield f" ✓ {len(chunks)} chunks, {context_chars:,} chars (~{estimated_tokens:,} tokens)\n" if estimated_tokens > self.valves.token_warning_threshold: yield f" ⚠ Warning: approaching context limit ({self.valves.llm_context_size})\n" yield "\n" # ───────────────────────────────────────────── # Step 6: Build prompt and call LLM # ───────────────────────────────────────────── if think: yield "**Step 6: Generate Response**\n" yield "\n\n" system_prompt = f""" ### ROLE You are the user's "Knowledge Partner." You are warm, enthusiastic, and helpful. You love the user's notes and want to help them connect ideas. ### THE GOLDEN RULE (HARD WALL) Your knowledge is strictly limited to the provided . - IF the answer is in the notes: Synthesize it warmly and cite it. - IF the answer is NOT in the notes: You must admit it. Say: "I checked your notes, but I couldn't find info on that." - **EXCEPTION:** ONLY if the user explicitly types the trigger phrase "System: Add Context" are you allowed to use outside knowledge. ### INSTRUCTIONS 1. **Search First:** Look through the to find the answer. 2. **Synthesize:** You may combine facts from different notes to build a complete answer. 3. **Cite Everything:** Every single statement of fact must end with a citation in this format: `[Note Name]`. 4. **Tone:** Be conversational but professional. Avoid robotic phrases like "According to the provided text." Instead, say "Your note on [Topic] mentions..." ### EXAMPLES (Follow this pattern) **User:** "What did I write about the project deadline?" **You:** "I looked through your project logs! It seems you set the final submission date for October 15th [Project_Alpha_Log]. You also noted that the design phase needs to wrap up by the 1st [Design_Team_Meeting]." **User:** "Who is the president of France?" (Note: This is NOT in your notes) **You:** "I checked your notes, but I don't see any mention of the current president of France. Would you like me to use outside knowledge? If so, just say 'System: Add Context'." ### SOURCE NOTES {context} """ # Only keep user/assistant messages conversation = [m for m in messages if m.get("role") in ("user", "assistant")] # UPDATED: Robustly strip previous "Sources" to prevent pattern matching conversation = [] for m in messages: if m.get("role") not in ("user", "assistant"): continue msg = m.copy() if msg["role"] == "assistant": content = msg.get("content", "") # Split on "**Sources:**" which is the visible header. # This catches it even if the newlines/separators are slightly different. if "**Sources:**" in content: msg["content"] = content.split("**Sources:**")[0].strip() conversation.append(msg) llm_payload = { "model": self.valves.llm_model, "messages": [ {"role": "system", "content": system_prompt}, *conversation, ], "stream": True, "options": {"num_ctx": self.valves.llm_context_size}, } # Stream LLM response prompt_tokens = 0 completion_tokens = 0 try: async with session.post( f"{self.valves.ollama_url}/api/chat", json=llm_payload, timeout=aiohttp.ClientTimeout(total=self.valves.llm_timeout), ) as resp: if resp.status != 200: yield f"LLM error: HTTP {resp.status}" return async for line in resp.content: if not line: continue try: data = json.loads(line) if text := data.get("message", {}).get("content"): yield text if data.get("done"): prompt_tokens = data.get("prompt_eval_count", 0) completion_tokens = data.get("eval_count", 0) except json.JSONDecodeError: continue except asyncio.TimeoutError: yield "\n\n⚠️ LLM timed out" return except Exception as e: yield f"\n\nLLM error: {e}" return # ───────────────────────────────────────────── # Sources # ───────────────────────────────────────────── if self.valves.show_sources: # Dedupe by file path, count chunks source_counts: dict[str, dict] = {} for chunk in chunks: payload = chunk.get("payload", {}) path = payload.get("filePath", "") name = payload.get("fileName", "Unknown") if path in source_counts: source_counts[path]["count"] += 1 else: source_counts[path] = {"name": name, "path": path, "count": 1} yield "\n\n---\n**Sources:**\n" for src in source_counts.values(): vault = urllib.parse.quote(self.valves.vault_name) path = urllib.parse.quote(src["path"]) uri = f"obsidian://open?vault={vault}&file={path}" count_str = f" ({src['count']} chunks)" if src["count"] > 1 else "" yield f"- [{src['name']}]({uri}){count_str}\n" # ───────────────────────────────────────────── # Stats # ───────────────────────────────────────────── if self.valves.show_stats: yield f"\n*{prompt_tokens:,} in / {completion_tokens:,} out*"