Files
ObsidianRAGPipe/ObsidianRAGPipe.py

469 lines
19 KiB
Python

"""
title: Obsidian RAG Pipeline
author: Daniel Henry
version: 0.15
"""
import asyncio
import json
import time
import urllib.parse
from typing import AsyncGenerator
import aiohttp
from pydantic import BaseModel, Field
class Pipe:
class Valves(BaseModel):
# Endpoints
ollama_url: str = Field(default="http://ollama.internal.henryhosted.com:11434")
qdrant_url: str = Field(default="http://app-01.internal.henryhosted.com:6333")
rerank_url: str = Field(default="http://ollama.internal.henryhosted.com:7997")
# Qdrant
collection_name: str = Field(default="obsidian_vault")
retrieve_count: int = Field(
default=50, description="Candidates to fetch from Qdrant"
)
qdrant_score_threshold: float = Field(
default=0.3, description="Minimum similarity score"
)
# Reranker
rerank_enabled: bool = Field(
default=True, description="Set to False to skip reranking"
)
rerank_timeout: float = Field(default=60.0)
min_rerank_score: float = Field(
default=0.01, description="Minimum rerank score to keep"
)
final_top_k: int = Field(
default=10, description="Chunks to keep after reranking"
)
# LLM
embedding_model: str = Field(default="nomic-embed-text:latest")
llm_model: str = Field(default="llama3.2:3b")
llm_context_size: int = Field(default=8192)
llm_timeout: float = Field(default=300.0)
query_rewrite_model: str = Field(
default="",
description="Model for query rewriting. Leave empty to use llm_model.",
)
# Obsidian
vault_name: str = Field(
default="Main", description="For generating obsidian:// links"
)
# Display
show_thinking: bool = Field(default=True)
show_sources: bool = Field(default=True)
show_stats: bool = Field(default=True)
token_warning_threshold: int = Field(
default=6000, description="Warn if context exceeds this"
)
def __init__(self):
self.valves = self.Valves()
async def pipe(self, body: dict) -> AsyncGenerator[str, None]:
messages = body.get("messages", [])
if not messages:
yield "No messages provided."
return
query = messages[-1].get("content", "").strip()
if not query:
yield "Empty query."
return
async with aiohttp.ClientSession() as session:
async for chunk in self._execute(session, query, messages):
yield chunk
async def _execute(
self,
session: aiohttp.ClientSession,
query: str,
messages: list[dict],
) -> AsyncGenerator[str, None]:
think = self.valves.show_thinking
# Start thinking block immediately
if think:
yield "<think>\n"
yield f"**Query:** {query}\n\n"
# ─────────────────────────────────────────────
# Step 1: Rewrite query with conversation context
# ─────────────────────────────────────────────
if think:
yield "**Step 1: Query Rewriting**\n"
t0 = time.time()
rewrite_model = self.valves.query_rewrite_model or self.valves.llm_model
# Build conversation context for rewriting
conversation_for_rewrite = []
for m in messages[:-1]: # All messages except the last one
role = m.get("role", "")
content = m.get("content", "")
if role == "user":
conversation_for_rewrite.append(f"User: {content}")
elif role == "assistant":
# Truncate assistant responses to avoid bloat
truncated = content[:500] + "..." if len(content) > 500 else content
conversation_for_rewrite.append(f"Assistant: {truncated}")
current_question = messages[-1].get("content", "")
# If there's prior conversation, rewrite the query
if conversation_for_rewrite:
rewrite_prompt = f"""Do not interpret or answer the question. Simply add enough context from the conversation so the question makes sense on its own.
Conversation:
{chr(10).join(conversation_for_rewrite)}
Latest question: {current_question}
Rewrite the question to be standalone (respond with ONLY the rewritten question, nothing else):"""
try:
async with session.post(
f"{self.valves.ollama_url}/api/generate",
json={
"model": rewrite_model,
"prompt": rewrite_prompt,
"stream": False,
},
timeout=aiohttp.ClientTimeout(total=30),
) as resp:
if resp.status == 200:
data = await resp.json()
rewritten = data.get("response", "").strip()
# Sanity check - if rewrite is empty or way too long, use original
if rewritten and len(rewritten) < 1000:
search_query = rewritten
else:
search_query = current_question
else:
search_query = current_question
except Exception as e:
if think:
yield f" ⚠ Rewrite failed: {e}, using original query\n"
search_query = current_question
else:
# No prior conversation, use the question as-is
search_query = current_question
if think:
yield f" Model: {rewrite_model}\n"
yield f" Original: {current_question}\n"
yield f" Search query: {search_query}\n"
yield f" ✓ Done ({time.time() - t0:.2f}s)\n\n"
# ─────────────────────────────────────────────
# Step 2: Embed
# ─────────────────────────────────────────────
if think:
yield "**Step 2: Embedding**\n"
t0 = time.time()
try:
async with session.post(
f"{self.valves.ollama_url}/api/embeddings",
json={
"model": self.valves.embedding_model,
"prompt": search_query,
"options": {"num_ctx": 8192},
},
timeout=aiohttp.ClientTimeout(total=15),
) as resp:
if resp.status != 200:
if think:
yield f" ✗ HTTP {resp.status}\n</think>\n\n"
yield f"Embedding failed: HTTP {resp.status}"
return
embedding = (await resp.json()).get("embedding")
except Exception as e:
if think:
yield f"{e}\n</think>\n\n"
yield f"Embedding failed: {e}"
return
if think:
yield f" ✓ Done ({time.time() - t0:.2f}s)\n\n"
# ─────────────────────────────────────────────
# Step 3: Search Qdrant
# ─────────────────────────────────────────────
if think:
yield "**Step 3: Qdrant Search**\n"
t0 = time.time()
try:
async with session.post(
f"{self.valves.qdrant_url}/collections/{self.valves.collection_name}/points/search",
json={
"vector": embedding,
"limit": self.valves.retrieve_count,
"with_payload": True,
"score_threshold": self.valves.qdrant_score_threshold,
},
timeout=aiohttp.ClientTimeout(total=15),
) as resp:
if resp.status != 200:
if think:
yield f" ✗ HTTP {resp.status}\n</think>\n\n"
yield f"Qdrant search failed: HTTP {resp.status}"
return
qdrant_results = (await resp.json()).get("result", [])
except Exception as e:
if think:
yield f"{e}\n</think>\n\n"
yield f"Qdrant search failed: {e}"
return
if think:
yield f" ✓ Found {len(qdrant_results)} chunks ({time.time() - t0:.2f}s)\n"
if not qdrant_results:
if think:
yield " ✗ No results\n</think>\n\n"
yield "No relevant notes found for this query."
return
# Show top 5
if think:
yield " Top 5:\n"
for i, r in enumerate(qdrant_results[:5]):
name = r.get("payload", {}).get("fileName", "?")
score = r.get("score", 0)
yield f" {i+1}. [{score:.4f}] {name}\n"
yield "\n"
# ─────────────────────────────────────────────
# Step 4: Rerank (optional)
# ─────────────────────────────────────────────
if self.valves.rerank_enabled:
if think:
yield "**Step 4: Reranking**\n"
t0 = time.time()
docs_for_rerank = [
r.get("payload", {}).get("content", "") for r in qdrant_results
]
try:
async with session.post(
f"{self.valves.rerank_url}/rerank",
json={
"query": search_query,
"documents": docs_for_rerank,
"return_documents": False,
},
timeout=aiohttp.ClientTimeout(total=self.valves.rerank_timeout),
) as resp:
if resp.status != 200:
if think:
yield f" ⚠ Reranker failed: HTTP {resp.status}, using Qdrant order\n\n"
chunks = qdrant_results[: self.valves.final_top_k]
else:
rerank_results = (await resp.json()).get("results", [])
# Apply rerank scores and filter
scored = []
for item in rerank_results:
idx = item["index"]
score = item["relevance_score"]
if score >= self.valves.min_rerank_score:
chunk = qdrant_results[idx].copy()
chunk["rerank_score"] = score
scored.append(chunk)
scored.sort(key=lambda x: x["rerank_score"], reverse=True)
chunks = scored[: self.valves.final_top_k]
if think:
yield f" ✓ Kept {len(chunks)} chunks ({time.time() - t0:.2f}s)\n"
if chunks:
yield " Top 5 after rerank:\n"
for i, c in enumerate(chunks[:5]):
name = c.get("payload", {}).get("fileName", "?")
score = c.get("rerank_score", 0)
yield f" {i+1}. [{score:.4f}] {name}\n"
yield "\n"
except Exception as e:
if think:
yield f" ⚠ Reranker error: {e}, using Qdrant order\n\n"
chunks = qdrant_results[: self.valves.final_top_k]
else:
if think:
yield "**Step 4: Reranking** (disabled)\n\n"
chunks = qdrant_results[: self.valves.final_top_k]
if not chunks:
if think:
yield " ✗ No chunks after filtering\n</think>\n\n"
yield "No relevant notes passed the relevance threshold."
return
# ─────────────────────────────────────────────
# Step 5: Build context
# ─────────────────────────────────────────────
if think:
yield "**Step 5: Build Context**\n"
context_parts = []
for i, chunk in enumerate(chunks, 1):
payload = chunk.get("payload", {})
file_name = payload.get("fileName", "Unknown")
content = payload.get("content", "").strip()
source = payload.get("source", "")
part = f"### Note {i}: {file_name}\n"
if source:
part += f"Original source: {source}\n"
part += f"\n{content}"
context_parts.append(part)
context = "\n\n---\n\n".join(context_parts)
context_chars = len(context)
estimated_tokens = context_chars // 4
if think:
yield f"{len(chunks)} chunks, {context_chars:,} chars (~{estimated_tokens:,} tokens)\n"
if estimated_tokens > self.valves.token_warning_threshold:
yield f" ⚠ Warning: approaching context limit ({self.valves.llm_context_size})\n"
yield "\n"
# ─────────────────────────────────────────────
# Step 6: Build prompt and call LLM
# ─────────────────────────────────────────────
if think:
yield "**Step 6: Generate Response**\n"
yield "</think>\n\n"
system_prompt = f"""You are a specialized Research Assistant. Your goal is to synthesize information from the provided user notes.
### INSTRUCTIONS
1. **Primary Source:** Answer the user's question using strictly the content found within the <notes> section below.
2. **Citation:** Every claim you make must be immediately followed by a citation in this format: [Note Name].
3. **Missing Info:** If the <notes> do not contain the answer, explicitly state: "Your notes don't cover this." Do not attempt to guess or hallucinate an answer.
4. **Exception Handling (Outside Knowledge):**
- You are generally FORBIDDEN from using outside knowledge.
- **HOWEVER**, if the user explicitly asks for external context (e.g., "What am I missing?", "Add outside context"), you may provide it.
- If you trigger this exception, you must prefix that specific part of the response with: "**Outside Context:**".
### FORMATTING
- Be concise and direct.
- Use bullet points for lists.
### SOURCE DATA
<notes>
{context}
</notes>
"""
# Only keep user/assistant messages
conversation = [m for m in messages if m.get("role") in ("user", "assistant")]
# UPDATED: Robustly strip previous "Sources" to prevent pattern matching
conversation = []
for m in messages:
if m.get("role") not in ("user", "assistant"):
continue
msg = m.copy()
if msg["role"] == "assistant":
content = msg.get("content", "")
# Split on "**Sources:**" which is the visible header.
# This catches it even if the newlines/separators are slightly different.
if "**Sources:**" in content:
msg["content"] = content.split("**Sources:**")[0].strip()
conversation.append(msg)
llm_payload = {
"model": self.valves.llm_model,
"messages": [
{"role": "system", "content": system_prompt},
*conversation,
],
"stream": True,
"options": {"num_ctx": self.valves.llm_context_size},
}
# Stream LLM response
prompt_tokens = 0
completion_tokens = 0
try:
async with session.post(
f"{self.valves.ollama_url}/api/chat",
json=llm_payload,
timeout=aiohttp.ClientTimeout(total=self.valves.llm_timeout),
) as resp:
if resp.status != 200:
yield f"LLM error: HTTP {resp.status}"
return
async for line in resp.content:
if not line:
continue
try:
data = json.loads(line)
if text := data.get("message", {}).get("content"):
yield text
if data.get("done"):
prompt_tokens = data.get("prompt_eval_count", 0)
completion_tokens = data.get("eval_count", 0)
except json.JSONDecodeError:
continue
except asyncio.TimeoutError:
yield "\n\n⚠️ LLM timed out"
return
except Exception as e:
yield f"\n\nLLM error: {e}"
return
# ─────────────────────────────────────────────
# Sources
# ─────────────────────────────────────────────
if self.valves.show_sources:
# Dedupe by file path, count chunks
source_counts: dict[str, dict] = {}
for chunk in chunks:
payload = chunk.get("payload", {})
path = payload.get("filePath", "")
name = payload.get("fileName", "Unknown")
if path in source_counts:
source_counts[path]["count"] += 1
else:
source_counts[path] = {"name": name, "path": path, "count": 1}
yield "\n\n---\n**Sources:**\n"
for src in source_counts.values():
vault = urllib.parse.quote(self.valves.vault_name)
path = urllib.parse.quote(src["path"])
uri = f"obsidian://open?vault={vault}&file={path}"
count_str = f" ({src['count']} chunks)" if src["count"] > 1 else ""
yield f"- [{src['name']}]({uri}){count_str}\n"
# ─────────────────────────────────────────────
# Stats
# ─────────────────────────────────────────────
if self.valves.show_stats:
yield f"\n*{prompt_tokens:,} in / {completion_tokens:,} out*"